Charged and metallic molecular monolayers through surface-induced aromatic stabilization.

نویسندگان

  • G Heimel
  • S Duhm
  • I Salzmann
  • A Gerlach
  • A Strozecka
  • J Niederhausen
  • C Bürker
  • T Hosokai
  • I Fernandez-Torrente
  • G Schulze
  • S Winkler
  • A Wilke
  • R Schlesinger
  • J Frisch
  • B Bröker
  • A Vollmer
  • B Detlefs
  • J Pflaum
  • S Kera
  • K J Franke
  • N Ueno
  • J I Pascual
  • F Schreiber
  • N Koch
چکیده

Large π-conjugated molecules, when in contact with a metal surface, usually retain a finite electronic gap and, in this sense, stay semiconducting. In some cases, however, the metallic character of the underlying substrate is seen to extend onto the first molecular layer. Here, we develop a chemical rationale for this intriguing phenomenon. In many reported instances, we find that the conjugation length of the organic semiconductors increases significantly through the bonding of specific substituents to the metal surface and through the concomitant rehybridization of the entire backbone structure. The molecules at the interface are thus converted into different chemical species with a strongly reduced electronic gap. This mechanism of surface-induced aromatic stabilization helps molecules to overcome competing phenomena that tend to keep the metal Fermi level between their frontier orbitals. Our findings aid in the design of stable precursors for metallic molecular monolayers, and thus enable new routes for the chemical engineering of metal surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemoresponsive monolayer transistors.

This work details a method to make efficacious field-effect transistors from monolayers of polycyclic aromatic hydrocarbons that are able to sense and respond to their chemical environment. The molecules used in this study are functionalized so that they assemble laterally into columns and attach themselves to the silicon oxide surface of a silicon wafer. To measure the electrical properties of...

متن کامل

A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.

Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of ~0.5 to ~3 nm. Monolay...

متن کامل

The Nature of Electronic Contact in Self-Assembled Monolayers for Molecular Electronics: Evidence for Strong Coupling

Self-assembled-monolayers (SAMs) of aromatic thiolates on metal surfaces are candidates for molecular “quantum dots” or “wires”. We probe the interfacial electronic structure using two-photon photoemission in SAMs of pentafluorothiophenolate (C6F5S) on Cu(111). Compared to gas-phase C6F5SH, the σ* LUMO in the assembled molecule is stabilized by 3.1 eV and the HOMO-LUMO gap is reduced by 5.7 eV....

متن کامل

Molecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces

We directly observed molecular-thick aqueous salt-solution pancakes on a hydrophobic graphite surface under ambient conditions employing atomic force microscopy. This observation indicates the unexpected molecular-scale hydrophilicity of the salt solution on graphite surfaces, which is different from the macroscopic wetting property of a droplet standing on the graphite surface. Interestingly, ...

متن کامل

Determining whether positively-charged channel-forming molecules of polyene antibiotic with aromatic groups affect muscle activity?

This article evaluates the effect of membrane active channel-forming polyene antibiotic (PA) of levorin and its alkyl derivatives on the muscle performance. The membrane channels of muscle cells are capable to transport ions of potassium, sodium, and calcium. In the period of an intensive muscle exercise, the necessity for organic substrates increases and these channels start to work with the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2013